Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow

Building Science

Ventilation

Build Tight - Ventilate Right

Build Tight - Ventilate Right How Tight? What's Right?

Air Barrier Metrics

Material 0.02 l/(s-m2) @ 75 Pa

Assembly 0.20 l/(s-m2) @ 75 Pa

Enclosure 2.00 l/(s-m2) @ 75 Pa

0.35 cfm/ft2 @ 50 Pa

0.25 cfm/ft2 @ 50 Pa

0.15 cfm/ft2 @ 50 Pa

Getting rid of big holes 3 ach@50

Getting rid of smaller holes 1.5 ach@50

Getting German 0.6 ach@50

Best

As Tight as Possible - with -

Balanced Ventilation

Energy Recovery

Distribution

Source Control - Spot exhaust ventilation

Filtration

Material selection

Worst

Leaky - with –
Exhaust ventilation
No Distribution

Relative Humidity (RH) %

Recommended Range of Relative Humidity Above 25 percent during winter Below 70 percent during summer

Barriers – Technology Dehumidification

Barriers – Cost Exhaust \$150

Exhaust + Dist \$200

Supply + Dist \$200

Spot + Ex/Sup + Dist \$500

Balanced/ER \$1,250

Dehumidification \$250 to \$1,250

- Tracer gas test of a production house in Sacramento
- 2-story, 4 bedrooms, ~2500 square feet
- Ventilation systems tested: supply and exhaust ventilation, with and without mixing via central air handler

Floor Plan - 2 Story House

Example Results of Tracer Gas Testing

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, No Mixing

Example Results of Tracer Gas Testing

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, 33% Mixing

Example Results of Tracer Gas Testing

Conclusions From Tracer Gas Testing

- Mixing is very important to whole-house and individual zone pollutant decay rate
- Supply ventilation is slightly more effective than exhaust ventilation, even with mixing
- The location of a single-point ventilation system affects the performance

Simple Exhaust vs Central Fan Integrated Supply with Lower Ventilation Rates

Tuned CONTAM Model

Computer modeling used to replicate field testing (tune the model) and predict performance of systems not tested in the field

Example Results of Tuned CONTAM Model

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, No Mixing

Example Results of Tuned CONTAM Model

Example Results of Tuned CONTAM Model

Tuned CONTAM Model Applied to Other Systems

Systems Evaluated & Compared:

- 1. Exhaust ventilation, without central duct system
- 2. Supply ventilation, without central duct system
- 3. Exhaust ventilation, with central ducts, standard Tstat
- 4. Exhaust ventilation, with central ducts, Tstat with timer
- 5. Supply ventilation, with central ducts, Tstat with timer
- 6. Fully ducted balanced ventilation system, without central duct system

Q(v) = Ventilation Rate

 $Q(fan) = Q(v) \cdot C(s)$

C(s) = System Coefficient

Airflow Ratios—All Simulations

System Type	Range	Approximate Median
Fully ducted balanced ventilation system, with or without central duct system	1.0	1.0
Non-fully ducted balanced ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	0.9 to 1.1	1.0
Supply ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	1.1 to 1.7	1.25
Exhaust ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	1.1 to 1.9	1.25
Exhaust ventilation, with central duct system, and central air handler unit not controlled to a minimum runtime of at least 10 minutes per hour	1.0 to 1.8	1.5
Supply ventilation, without central duct system	1.4 to 1.9	1.75
Exhaust ventilation, without central duct system	1.3 to 2.6	2.0

ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.03 cfm per square foot of conditioned area

Occupancy is deemed to be the number of bedrooms plus one